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The finite element procedure for elliptic boundary value problems has been modified to deal 
with a boundary singularity. The mesh is refined locally, and the nodal values in the 
refinement region are constrained to agree with the known form of the solution in series, trun- 
cated after a finite number of terms. Solution of the finite element equations yields the coef- 
ficients in this series, together with the nodal values exterior to the refinement region, which 
constitutes a conforming super-element. The method has been applied to a model problem in 
two-dimensional fracture mechanics. The stress intensity factor is obtained directly and, 
together with the nodal displacements, is in good agreement with previous results. 

1. INTR~OUCTI~N 

During the last decade various extensions have been made to the standard finite 
element procedure in order to enable it to deal with singular boundary value 
problems. The resulting techniques have been utilized extensively in fracture 
mechanics, in particular to compute stress intensity factors for various geometries. 

Two basic approaches have been developed to allow for the presence of a 
singularity. In one approach, exemplified by [l-3], the usual elements are used, but 
the mesh is refined locally in the neighbourhood of the singularity. The other 
approach takes into account the known form of the solution near the singular point. 
In Refs. [4,6-91, for example, singular functions are included explicitly in the trial 
function space, these functions being confined in most of the methods to a single 
element surrounding the tip of the re-entrant corner where the singularity occurs. In 
[ 51, on the other hand, special isoparametric elements are used, the singularity being 
introduced via the transformation. 

The method of local mesh refinement has the disadvantage of considerably 
increasing the number of degrees of freedom, whilst the use of special elements makes 
the computational algorithm cumbersome. 

In this work we try to combine these two approaches. We still use conventional 
elements and refine the mesh in the neighbourhood of the singularity, but on the other 
hand utilize the known asymptotic form of the singular solution in order to greatly 
reduce the number of degrees of freedom in the refined reeion. 
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In Section 2 we explain the method and in Section 3 we apply it to a model 
problem and compare the results with those obtained by other methods. 

2. A MODIFIED FINITE ELEMENT APPROACH 

Let D be a two dimensional domain with a single re-entrant corner on its boundary 
(Fig. 1). 

Let u(x, y) be the solution of a boundary value problem over D, expressed either in 
differential or in variational form. We assume that in the neighbourhood of the re- 
entrant corner, u(x, y) may be represented by the series 

(1) 

where f,(x, y) are known functions. 
We set up a mesh of rectangular elements in the following manner. We divide the 

entire domain D into three regions (Fig. 2.) 
The interior region Din consists of a rectangle surrounding the tip of the re-entrant 

corner. D,,, denotes the exterior region up to the boundary 130, and D,, is a tran- 
sition strip between Din and D,,,. 

In D,,, we use the usual bilinear elements. 
In Din we still use bilinear trial functions in each rectangle, but the nodal values 

are no longer taken to be independent of one another. Instead, we require the values 
of u to satisfy the series (l), truncated after 1 terms, at each mesh point of Din. Thus 
we have 

Sj = 2 a,f~(xj9Yj), 

where qj denotes the vector of the nodal values at the mesh point (xi, yj). 

FIG. I. Re-entrant corner on the boundary of D. 
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FIG. 2. Refinement region surrounding the singular point. 

The unknowns in the region Din will therefore be a,,..., a, instead of the nodal 
values, and we are in effect solving the variational problem subject to the constraints 
expressed by (2). The trial function over each element in Di, will thus be the bilinear 
interpolant to the values of the truncated series at the four corners. 

We formulate the method in detail as follows. Let e be an element of Di,. Denote 
by qe the vector of the nodal values in e, and by S, the corresponding element 
stiffness matrix obtained for a bilinear trial function. In our model problem, we will 
use congruent rectangles of identical orientation, so evidently S, will be the same for 
each element of Di,. 

We can write q, in the form 

qe = ha, (3) 

where a is the vector (a, ,..., a,)‘. The rows of the matrix A, are grouped in four 
blocks, corresponding to the four corners, the number of rows in each block being 
equal to the dimension of the vector of the nodal values at one corner. For instance, if 
in each corner there are two nodal values, A, will be as follows. 

fw,LY,) fY’(X,TYl) a** f?‘(LY,) 
flYx,LY,) f:2’hYd ... f~2’bh) 

A,= 

: : : 

Y,> f:I)041 Y4) . . : m,, Y4) 
f12’(X4d4) f:*‘(hY4) ... f;2’hd,) 

In terms of the new variables the stiffmess matrix will be 

S,* = AT&A,, 

and this is the form used in the assembly. 

(4) 

(5) 
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Finally we consider the elements of D,,. Let d in Fig. 3 be a typical element in D,,. 
not one of the four corner elements denoted by c in Fig. 2. 

Let Qi, Qj be the vectors of the nodal values at the two mesh points common to d 
and the adjacent element in D,,,. We divide the side of d adjacent to Di, into n equal 
parts, and this enables us to divide d into IZ equal rectangular elements as in Fig. 3. 
Let q?’ , , i = 1, 2, 3,4, be the nodal value vectors at the corners of the kth subelement 
d, in d. 

By taking 

q:k’= (1 -F)Qi+yQj; k = 1, 2,. .., n, (6) 

the conforming condition is fulfilled between d, and the neighbouring elements. 
Denoting by qCk’ the vector of all the nodal values in d, and substituting qik’ and qik’ 
as in (2) we have 

9 (k’ = A,a*, (7) 

where a* is a vector whose components are a, ,..., a, and the components of Qi and 
Qi. The matrix A,, assuming again two nodal values at each corner, will be 

fl"(X, 1 Y,) ... fj"(x,,.Y,) 0 0 0 0 
f12'(x,LY,) ... fj2'(x,,.Y,) 0 0 0 0 
fl’Tx2 3 Y2) ... f)%*,Y*) 0 0 0 0 
f12’(x2 3 Y2) ... f;“(x*,Y*) 0 0 0 0 

0 0 1-L 0 LO 
n n 

0 0 0 1-k 0 k 
n n 

0 0 0 l-k-1 k-l 
O- 

n n 

From Eq. (7) the new stiffness matrix for d, will be 

(9) 

Sd,, being the usual bilinear element stiffness matrix for d,, dependent of course on n, 
the interior refinement number. We sum up all of the contributions of the elements 

(8) 
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FIG. 3. Typical element d in D,,. 

d,, k = l,..., n, to form the stiffness matrix S, to be used in the assembly, the 
unknowns being the terms of the generalized nodal value vector a*, 

(10) 

This element, over which the trial function will be continuous and piecewise bilinear, 
is a kind of generalization of the 5-node element described by Gregory et al. in [ 21. 

The corner elements of D,, are treated likewise. The contribution of these elements 
is not affected by the size of the mesh in the interior region Din. 

By assigning appropriate indices to a,,..., a, in the total vector of unknowns, the 
global stiffness matrix will still have a band structure without a serious increase in 
the bandwidth, provided that 1 is not too large, as is indeed the case. 

On the other hand, if we consider the regions Di, and D,, together as constituting a 
super-element, we can eliminate a, ,..., a, by static condensation, leaving only the 
nodal values in the exterior region as unknowns. In this case, the dimensions of the 
global stiffness matrix will be affected neither by the number of terms we use in series 
(l), nor by the number of interior refinements. 

Thus, in order to increase accuracy for a given mesh size in the exterior region 
D ,,Ut, the mesh in Din can be relined without adding to the number of variables in the 
final equations. 

These refinements in Din should be carried out until the super-element stiffness 
matrix SsUP becomes effectively constant. We then store the final matrix SsUp, 
together with the matrix Hsup, which relates the nodal values of the super-element to 
the values of the coefficients in the series. This relation is given by 

(11) 

4 being the vector of all the nodal values of the super-element. 



70 OGEN AND WHIFF 

SSUp and H,,, having been thus recorded, the super-element can now be included in 
any finite element mesh in order to solve boundary value problems for various 
geometries. 

3. TEST PROBLEM AND NUMERICAL RESULTS 

In this section we use the method outlined above to compute the displacement field 
and the stress intensity factor for the case of a two dimensional elastic solid in a 
rectangle containing an edge crack, subjected to a uniform inplane load T over the 
ends (Fig. 4). 

The material is homogeneous and isotropic with elastic constants 1 = ,U = 0.5. This 
problem has been solved by Motz in [lo] and by Woods in ] 111 using finite 
difference methods, and in more recent times by finite element and boundary 
collocation techniques 12, 3, 121. The series solution for the displacement in an 
infinite domain containing a semi-infinite stress-free crack (Fig. 5) takes the form: 

2pu(r, 13) = 2pu, + f (a, rn-“’ [ (tj + n - t) cos(n - i) 19 
n-1 

- (n - f) cos(n - 3) 81 

+ p, rn-“2 [ -(q + II + f) sin(n - f) 0 + (n - 4) sin(n - $) B] 

+ y,r”[(q + n + 1) cos ne - n cos(n - 2) f?] 

+ 6, r” [-(q + n - 1) sin nB + n sin(n - 2) S] ), 

~,LuI(~, 8) = ~,MI, + f (a,r”m”2[(q -n + +) sin(n - f) e 
n=, 

+ (n - 4) sin(n - t) e] 

where n = 3 - 4~7 (plain strain), u being the Poisson ratio. The polar coordinates are 
as in Fig. 5, and (u,, ZJ,,) denotes (u, v) at r = 0. 

For a finite domain containing a crack, the series (12) can also be used as an 
approximation to the solution in the neighbourhood of the crack tip. 

In view of the symmetry of the domain and the boundary conditions, it is sufficient 
to solve the problem on the upper half of D, with the appropriate boundary 
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T;O 

T;o 

TX=0 T -0 Y I I Tyo 

D 

-0.8 n 
FIG. 4. The model problem. 

conditions, as shown in Fig. 6. Because of the symmetry, the coefficients /?, and a,, in 
(12) must vanish. Taking u0 = v,, = 0 and defining 

a2i-, = ai, a,[ = Yj, i> 1, (13) 

and fi(r, 0) for i > 1 according to formula (12), we obtain a series of the form (1). 

Y 

r 

e =-l/j X 

FIG. 5. Crack geometry. 
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FIG. 6. Domain and boundary conditions as used in the computations. 

The calculations were carried out in the displacement formulation in which the 
potential energy integral to be minimized is [ 3 ]: 

z=f [(~+2~u)(uT,+vf,>+iu(uf,+vt,+2u,,v,,) 1:r D 

(14) 

The trial functions for u and u are required to have square integrable lirst derivatives 
and to satisfy the essential boundary conditions, which in our case amounts to the 
vanishing of u for y = 0 and x > 0 (Fig. 6). 8D, is that part of the boundary on which 
surface tractions are specified-the entire boundary in the present case. As mentioned 
in the previous section, bilinear trial functions were used. 

The computations were performed using two different exterior meshes, for several 
internal refinement levels and for a varying number of terms in the series (12). The 
mesh dimensions in both exterior regions, namely, 0.1 X 0.0875 (mesh 1) and 
0.05 x 0.04375 (mesh 2), were chosen to-make the nodes coincide with those used in 
Refs. [3, 121. The dimension of the refinement region Din + D,, was 0.4 X 0.2625, the 
same for both exterior meshes. Exterior mesh 1 with refinement level n = 2 is 
illustrated in Fig. 7, and exterior mesh 2 with refinement level n = 4 in Figs. 8a and b. 
The applied load was taken to be T = 0.1. The values obtained for the displacements 
are displayed in Tables I-VI. 
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FIG. 1. Exterior mesh I (152 degrees of freedom) with interior refinement level II = 2. 

Table I illustrates the effect of including differing numbers of terms in the series 
(12) (i.e., of varying I), whilst keeping the number of elements fixed in all three 
regions. It can be seen that the values converge rapidly with increasing 1, and no 
significant improvement is obtained by including more than eight terms in the series. 

The results are, however, further improved by relining the mesh in the interior 
regions D,, and D,,, and the effect of performing this refinement whilst maintaining a 
fixed mesh in the outer region D,,, is illustrated in Table II 
in Table III for external mesh 2. 

for external mesh 1, and 

’ See Fig.8b 

FIG. 8a. Exterior mesh 2 (502 degrees of freedom). 
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FIG. 8b. Interior region for mesh 2 with interior refinement level n = 4. 

For a given external mesh size, the difference between the values for successive 
internal refinements decreases by a factor of approximately one-half, indicating that 
the values for interior mesh size h differ by a quantity of O(h) from those which 
would be obtained using an infinite number of internal refinements. We therefore 
carried out Richardson extrapolation, assuming the error in the displacements to be 
of the form C,zi c,h’. The results of successive extrapolations at three typical mesh 
points are listed in Tables IV and V for exterior meshes 1 and 2, respectively. The 
rapid convergence indicates the correctness of the assumed form for the error. 
Comparison with the results in Tables II and III shows the extrapolated values to be 
very close to those obtained with the largest number of internal refinements. 

TABLE I 

Values of (u, u) for Varying Number of Terms in the Series Using Exterior Mesh I for Interior 
Refinement Level No. n = I6 

Position 

x ?’ 

-0.3 0 

-0.3 0.0875 

-0.2 0.175 

0.2 0.175 

0 0.35 

0 0.7 

2 

0.046 
2.089 

0.42 1 
2.093 

0.768 
1.656 

0.591 
0.173 

1.286 
0.978 

2.499 
1.313 

Number of terms I in the series 

4 6 8 IO 

0.060 0.070 0.069 0.070 
2.367 2.369 2.369 2.369 

0.5 I 1 0.518 0.519 0.5 I9 
2.368 2.371 2.371 2.371 

0.954 0.956 0.958 0.958 
I.849 1.854 1.854 1.854 

0.757 0.763 0.764 0.764 
0.127 0.124 0.124 0. I24 

1.576 1.584 1.585 1.585 
I.014 I.016 1.016 I.016 

2.978 2.991 2.991 2.991 
1.372 1.374 1.374 1.374 

I2 

0.069 
2.369 

0.5 IX 
2.37 I 

0.958 
1.854 

0.764 
0. I24 

1.585 
I.016 

2.99 I 
I.374 
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TABLE II 

Values of (u, u) for Varying Interior Refinement Levels 
Using Exterior Mesh I with Eight Terms in the Series 

Position 

x Y 

-0.3 0 

-0.3 0.0875 

-0.2 0.175 

0.2 0.175 

0 0.35 

0 0.7 

u 
V 

u 
V 

u 
V 

u 
v 

U 

v 

u 
V 

2 

0.045 
2.141 

0.461 
2.143 

0.865 
1.665 

0.675 
0.115 

1.419 
0.919 

2.686 
1.273 

Internal refinement number n 

4 8 16 

0.058 0.065 0.069 
2.261 2.33 1 2.369 

0.49 1 0.509 0.519 
2.262 2.333 2.371 

0.913 0.942 0.958 
1.765 1.822 1.854 

0.722 0.749 0.764 
0.120 1.122 0.124 

1.506 1.557 1.585 
0.970 1.000 1.016 

2.846 2.940 2.991 
1.326 1.357 1.374 

Extra- 
~ polated 

32 value 

0.072 0.074 
2.389 2.409 

0.524 0.529 
2.391 2.41 I 

0.966 0.974 
1.870 1.887 

0.772 0.780 
0.124 0.125 

1.599 I.614 
1.025 1.034 

3.018 3.045 
1.383 1.392 

TABLE III 

Values of (u, v) for Varying Interior Refinement Levels 
Using Exterior Mesh 2 with Eight Terms in the Series 

Position Internal refinement number n Extra- 
-~ polated 

x J’ 2 4 8 16 32 value 

-0.3 0 I4 
V 

-0.3 0.0875 u 
v 

-0.2 0.175 I4 
z! 

0.2 0.175 u 
Ll 

0 0.35 u 
” 

0 0.7 u 
u 

0.063 0.070 0.073 0.075 0.076 0.077 
2.295 2.369 2.408 2.429 2.439 2.450 

0.502 0.520 0.529 0.534 0.537 0.540 
2.297 2.370 2.410 2.430 2.44 1 2.45 1 

0.928 0.958 0.974 0.982 0.986 0.990 
1.792 1.853 1.885 1.902 1.911 1.919 

0.742 0.770 0.785 0.793 0.197 0.801 
0.122 0.125 0.126 0.127 0.128 0.128 

1.536 1.589 1.618 1.632 1.640 1.648 
0.983 1.014 1.031 1.040 1.044 1.049 

2.900 2.997 3.050 3.077 3.091 3.095 
1.337 1.369 1.387 1.396 1.401 1.405 
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TABLE IV 

Extrapolated Values of (u, u) for Successive Internal Refinement Levels with Eight Terms in Series (12). 
Using Exterior Mesh 1 

Position Refinement levels used 
.__~~ ______ 

X ?: 2, 4 234, 8 2,4, 8, 16 2.4. 8. 16. 32 

-0.3 0 u 0.07053 0.07356 0.07369 0.07369 
II 2.3803 2.4082 2.4092 2.4092 

0 0.7 u 3.0060 3.0437 3.045 I 3.045 1 
u 1.3791 1.3916 1.3920 1.3921 

0.2 0.175 u 0.7685 0.7797 0.7801 0.7801 
u 0.1242 0.125 1 0.1251 0.1251 

The final extrapolated values for exterior meshes 1 and 2 are listed and compared 
with the results of two other finite element calculations [3] in Table VI. One 
calculation employed Hermite cubic elements with local mesh refinement (a gradual 
refinement of the mesh as the singularity is approached) to compute the Airy stress 
function U at the mesh points. The coefficients in the appropriate series of the form 
(1) for U were then computed by least square fitting, and the displacements u and z! 
listed in Table VI were obtained by evaluating the corresponding series (12). The 
other calculations used the stress-hybrid formulation, which yields the displacements 
at the meshes directly without having recourse to the series expansion. Bilinear 
stresses were assumed inside the elements and linear displacements along the element 
boundaries, with local mesh refinement in the neighbourhood of the crack tip. 

In both calculations, the elements outside the region of local refinement were of the 
same size as those in our exterior mesh 1. Our displacements for mesh 1 are seen to 

TABLE V 

Extrapolated Values of (u, u) for Successive Internal Refinement Levels with Eight Terms in Series (12). 
Using Exterior Mesh 2 

Position Refinement levels used 

x .1 2.4 234, 8 2,4,8, 16 2, 4. 8, 16, 32 

-0.3 0 u 0.07618 0.07678 0.07680 0.07680 
1: 2.4423 2.4496 2.4497 2.4497 

0 0.7 u 3.0954 3.1051 3.1053 3.1053 
u 1.4020 1.405 3 I .4053 I .4053 

0.2 0.175 u 0.7980 0.8008 0.8008 0.8008 
u 0.1278 0.1280 0.1280 0.1280 
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TABLE VI 

Extrapolated Values for (u, u) for Meshes 1 and 2 for 
Eight Terms in the Series, Compared with Those of Ref. 13 1 

Position 
Mesh 

x Y No. 1 

-0.3 0 u 0.074 
II 2.409 

-0.3 0.0875 u 0.529 
U 2.411 

-0.2 0.175 U 0.974 
V 1.887 

0.2 0.175 u 0.780 
t’ 0.125 

0 0.35 IA 1.614 
V 1.034 

0 0.7 u 3.045 
u 1.392 

Mesh 
No. 2 

Hermite cubic Stress-hybrid 
f.e.m. with f.e.m. with 
local mesh local mesh 
refinement’ refinement” 

0.077 0.077 0.075 
2.450 2.461 2.415 

0.539 0.542 0.530 
2.45 1 2.462 2.416 

0.990 0.994 0.977 
1.919 1.928 1.893 

0.801 0.808 0.781 
0.128 0.128 0.125 

1.647 1.656 1.619 
1.049 1.053 1.037 

3.105 3.063 3.055 
1.405 1.392 1.395 

TABLE VII 

Values of the Coefficients in Series (1) for Varying Interior Refinement Levels Using Exterior Mesh 1 
with Eight Terms in the Series 

2 

Interior refinement number Extra 
polated 

4 8 16 32 value 

1.055 1.141 1.190 1.216 1.230 1.244 
0.057 0.073 0.084 0.090 0.093 0.096 
0.848 0.869 0.882 0.890 0.894 0.898 

-0.093 0.053 0.115 0.145 0.160 0.174 
-0.236 -0.561 -0.734 -0.824 -0.871 -0.918 
-0.9 17 -0.578 -0.50 1 -0.48 1 -0.474 -0.469 

3.022 1.320 0.812 0.619 0.535 0.460 
1.389 0.449 0.190 0.099 0.061 0.028 
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TABLE VIII 

Values of the Coefftcients in the Series for Varying Interior Refinement Levels Using Exterior Mesh 2 
with Eight Terms in the Series 

2 

Interior refinement number Extra- 
_____~ - polated 

4 8 16 32 value 

--a, 1.165 1.211 1.235 1.248 1.254 1.261 

-a2 0.077 0.085 0.089 0.091 0.093 0.094 

-a3 0.884 0.904 0.915 0.921 0.924 0.927 

-4 0.057 0.087 0.101 0.108 0.112 0.1 16 

-a, -0.606 -0.713 -0.768 -0.796 -0.8 11 -0.826 

-a6 -0.469 -0.489 -0.505 -0.5 14 -0.5 19 -0.524 

-a7 1.008 0.95 1 0.938 0.935 0.935 0.935 

-0, 0.230 0.196 0.188 0.186 0.185 0.185 

be in excellent agreement with the stress-hybrid values (both calculations use linear 
trial functions). Our results for mesh 2 are, on the other hand, closer in most cases to 
the values obtained using Hermite cubic, i.e., higher-order, elements. 

The values obtained for the coefficients ai using the present method are listed in 
Tables VII and VIII for varying degrees of internal refinement and for the two 
different exterior meshes, eight terms having been included in the series (12). It can 
be seen that the convergence with increasing internal refinement is markedly better in 
the case of the liner external mesh. Again, the deviations from the values which 
would be obtained using an infinite number of internal refinements are indicated to be 
of magnitude O(h). The results of the Richardson extrapolation applied to the Ui, 
i = 1-4, assuming the error to be a form similar to that of the displacements, are 
listed in Table IX for both exterior meshes. 

In Table X the final extrapolated values using exterior meshes 1 and 2 are 
compared with one another, and with the results [ 3) of two calculations based on the 

TABLE IX 

Extrapolated Values of a, ,..., ad, for Successive Internal Refinement Levels, for Both Exterior Meshes 
with Eight Terms in the Series 

Retine- Mesh I Mesh 2 
ment 
levels 2,478, 234, 8, 
used 2,4 234, 8 2,4,8, 16 16,32 234 2,4, 8 2,4, 8, 16 16.32 

-__- 

-a, 1.2268 1.2430 1.2438 1.2438 1.2565 1.2606 1.2606 1.2606 
-a2 0.08999 0.09554 0.09598 0.09599 0.09263 0.09342 0.09368 0.09368 
-a3 0.8895 0.898 1 0.8985 0.8985 0.9247 0.9272 0.9272 0.9272 
-4 0.1984 0.1708 0.1745 0.1745 0.1164 0.1154 0.1 156 0.1156 
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TABLE X 

Extrapolated Values of the Coefficients ai, i = I,..., 8, 
for Meshes 1 and 2 Compared with Ref. [ 3, 12 1 

Mesh 1 Mesh 2 

Hermite cubic 
f.e.m. with local 

refinement” 
Boundary 

collocationh 

-aI 1.244 1.261 
-a2 0.096 0.094 
-a3 0.899 0.927 
-4 0.175 0.116 
-a, -0.92 -0.83 - 

-a4 -0.47 -0.52 
-4 0.46 0.93 
-a8 0.03 0.18 

1.265 1.265 
0.095 0.094 
0.935 0.936 
0.101 0.100 
-0.80 -0.80 
-0.47 PO.46 
1.00 1.00 

a Ref. 131. 
bRef. 1121. 

Airy stress function formulation. One, as mentioned above, used Hermite cubic finite 
elements with local mesh refinement, whereas in the second, the a, were determined 
by boundary collocation of the series for the Airy stress function using a linear 
programming technique. Despite the fact that these two techniques are completely 
different in character, the resulting values of the a, agree very closely with one 
another. This indicates that these values are both reliable and accurate and may be 
used as a benchmark against which the accuracy of other calculations, such as the 
present one, may be assessed. As is to be expected, mesh 2 gives results somewhat 
closer on the whole to those obtained by the other methods. 

4. DISCUSSION 

The results quoted in the previous section show that the method yields accurate 
results for the displacements and for the coefficients in the series expansion about the 
singularity. For practical applications such as the determination of the stress intensity 
factor -f1,(27r)“~, u, being the first coefficient in the series, only a moderate number 
of internal mesh refinements are necessary. For example, the results in Table IX show 
that a, for a given exterior mesh may be determined to at least three significant digits 
by using only refinement levels 2, 4 and 8. For mesh 1 the values obtained differ from 
the benchmark values by only 1.7% and for mesh 2 the agreement is to within 0.32% 
(see Table X). On the CDC 6600 computer the total machine time needed for these 
three refinement levels was 10 set for mesh 1 and 63 set for mesh 2. A third of the 
time is spent on solving the simultaneous linear equations, and most of the remainder 
is expended on computing the matrices S, * from S, in the interior region Di, (see 
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Eq. (5)). On the other hand, it is not necessary to repeat this part of the calculation 
for every new case. The interior variables over the refinement region, which are just 
the coefficients of the series, may be eliminated using static condensation. Thus we 
obtain a super-element, which may be imbedded in any usual finite element mesh, and 
in fact the calculations described herein were carried out in this way. 

In order to assess the relative merit of the method, it is useful to compare the 
calculations with those reported in 131. These latter results were obtained with the aid 
of local mesh refinement, that is, the elements in the neighbourhood of the singularity 
are taken to be progressively smaller as the singularity is approached, instead of 
being of uniform size as in the present scheme. The results obtained using the 
displacement formulation were less accurate than those obtained by the present 
method. On the other hand, as mentioned above, the stress-hybrid formulation gave 
displacements which agree closely with the current results for mesh 1. The values of 
u, obtained from the horizontal and vertical displacements lie between the current 
values for meshes 1 and 2, whilst the rest of the coefficients in the series are less 
accurate than the current mesh 1 values. 

As regards the computing effort required, we note that whereas in the current 
method the system of equations has to be solved three times for each case (for 
internal refinement levels 2, 4 and S), when local mesh refinement is used, the 
calculation has to be repeated several times for varying degrees of refinement in order 
to determine when the results have converged. It would, therefore, appear reasonable 
to adopt the work needed for one solution of the linear equations as a rough measure 
of the computing effort involved in each scheme. The number of degrees of freedom n 
is 152 and 502 for meshes 1 and 2, respectively, in the current scheme, compared 
with 536 for the stress hybrid and 1104 for the Hermite cubic benchmark (both 
corresponding to the highest degree of local refinement employed). A more acceptable 
measure of the work involved is the quantity m*n, where 2m + 1 is the bandwidth. 
The values of rn2n are 2.6 x lo5 and 3.0 x lo6 for meshes 1 and 2 of the current 
method, respectively, compared with 7.3 x lo5 for the stress-hybrid and 1.9 x 10’ for 
the Hermite cubic. These figured indicate that the current method is at least as 
economical as the stress-hybrid approach with local mesh refinement. In addition, it 
should be noted that the coefficients of the series are obtained directly, without any 
resort to further computation. This feature of our method is particularly advan- 
tageous when considering configurations involving more than one singular point. In 
such cases, methods based on determining the a, from the displacements are liable to 
yield results which are quite sensitive to the particular fitting procedure chosen. In the 
present method, on the other hand, each singular point may be surrounded by its own 
superelement, and the coefficients in the expansion appropriate to each of these points 
will be determined automatically. 

In a further experiment, the stress-hybrid local refinement calculations were 
modified by constraining the nodal values in the refinement region to agree with the 
series (12) as in the present method. The resulting improvement was only marginal. 
We conclude, therefore, that in the region where the nodal values are to be 
constrained, a uniform refinement should be used, as in the method described herein. 
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CONCLUSIONS 

A modification of the finite element method has been developed for dealing with 
singular boundary value problems. By taking into account the known form of the 
solution in the neighbourhood of the singularity, the method enables the mesh to be 
refined locally without increasing the number of equations to be solved. The coef- 
ficients in the series expansion about the singular point are obtained directly from the 
computation, an important advantage in the application of the method to fracture 
mechanics for example, where the stress intensity factor is a multiple of the first coef- 
ficient. Computations carried out on a test crack problem in linear elasticity gave 
values for the displacements and the stress intensity factor which were in excellent 
agreement with the results obtained by other methods. The internal variables over the 
refinement region may be eliminated using static condensation, thus obtaining a 
super-element which may be imbedded in the usual finite element mesh. Thus, in 
fracture mechanics for example, it would be possible to prepare a library of such 
super-elements of various forms for different material constants, providing a reliable 
and comparatively cheap tool for the determination of stress intensity factors for 
various crack configurations. 

The method which we have described is quite general, and is capable of application 
to a variety of singular boundary value problems, provided only that the analytic 
form of the series solution is known in the neighbourhood of the singularity. 

It can thus be used for other cases of singularities arising from the shape of the 
boundary, for example, the much discussed problem of the eigenvalues of an L- 
shaped membrane [6]. It is also applicable when the singularity is caused by a 
discontinuity in the boundary condition, as in the problem in hydrodynamics 
discussed by Fox and Sankar [ 131, or when it occurs due to the presence of an 
interface in the domain, as in the model nuclear reactor problem discussed by Fix et 
al. (61. 
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